Các LLM Khác
Claude (cô-đê)
Model | Latest 1P API model name | Latest AWS Bedrock model name | GCP Vertex AI model name |
---|---|---|---|
Claude 3 Opus | claude-3-opus-20240229 | anthropic.claude-3-opus-20240229-v1:0 | claude-3-opus@20240229 |
Claude 3 Sonnet | claude-3-sonnet-20240229 | anthropic.claude-3-sonnet-20240229-v1:0 | claude-3-sonnet@20240229 |
Claude 3 Haiku | claude-3-haiku-20240307 | anthropic.claude-3-haiku-20240307-v1:0 | claude-3-haiku@20240307 |
python (trợ giúp)
import anthropic
client = anthropic.Anthropic(
# defaults to os.environ.get("ANTHROPIC_API_KEY")
api_key="sk-xxx",
)
message = client.messages.create(
model="claude-3-haiku-20240307",
max_tokens=1000,
temperature=0,
system="你是一个助手",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "你是谁?"
}
]
}
]
)
print(message.content)
Tích hợp với LlamaIndex
Cài đặt thư viện
pip install llama-index-llms-anthropic
from llama_index.llms.anthropic import Anthropic
from llama_index.core import Settings
import os
from llama_index.llms.anthropic import Anthropic
os.environ["ANTHROPIC_API_KEY"] = "sk-xxxx"
Settings.tokenizer = Anthropic().tokenizer
# llm = Anthropic(api_key="")
llm = Anthropic(model="claude-3-haiku-20240307")
resp = llm.complete("中国的首都是什么?")
print(resp)
Usage tier | Requirements to advance to tier | Max usage per month | |
---|---|---|---|
Credit purchase | Wait after first purchase | ||
Free | N/A | 0 days | $10 |
Build Tier 1 | $5 | 0 days | $100 |
Build Tier 2 | $40 | 7 days | $500 |
Build Tier 3 | $200 | 7 days | $1,000 |
Build Tier 4 | $400 | 14 days | $5,000 |
Scale | N/A | N/A | N/A |
Cấp 1
Model Tier | Requests per minute (RPM) | Tokens per minute (TPM) | Tokens per day (TPD) |
---|---|---|---|
Claude 3 Haiku | 50 | 50,000 | 5,000,000 |
Claude 3 Sonnet | 50 | 40,000 | 1,000,000 |
Claude 3 Opus | 50 | 20,000 | 1,000,000 |
Cấp độ 2
Model Tier | Requests per minute (RPM) | Tokens per minute (TPM) | Tokens per day (TPD) |
---|---|---|---|
Claude 3 Haiku | 1,000 | 100,000 | 25,000,000 |
Claude 3 Sonnet | 1,000 | 80,000 | 2,500,000 |
Claude 3 Opus | 1,000 | 40,000 | 2,500,000 |
Mặt tối của mặt trăng
curl https://api.moonshot.cn/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $MOONSHOT_API_KEY" \
-d '{
"model": "moonshot-v1-8k",
"messages": [
{"role": "system", "content": "你是 Kimi,由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。你会为用户提供安全,有帮助,准确的回答。同时,你会拒绝一切涉及恐怖主义,种族歧视,黄色暴力等问题的回答。Moonshot AI 为专有名词,不可翻译成其他语言。"},
{"role": "user", "content": "你好,我叫李雷,1+1等于多少?"}
],
"temperature": 0.3
}'
mô hình / mô hình / mô hình
moonshot-v1-8k
Moonshot-v1-32k
moonshot-v1-128k
LangChain
import os
from langchain_community.chat_models.moonshot import MoonshotChat
from langchain_core.messages import HumanMessage, SystemMessage
# Generate your api key from: https://platform.moonshot.cn/console/api-keys
os.environ["MOONSHOT_API_KEY"] = "sk-xxx"
messages = [
SystemMessage(
content="You are a helpful assistant."
),
HumanMessage(
content="你是谁?"
),
]
chat = MoonshotChat()
# or use a specific model
# Available models: https://platform.moonshot.cn/docs
# chat = MoonshotChat(model="moonshot-v1-128k")
r = chat.invoke(messages)
print(r)
ChatGLM
curl --location 'https://open.bigmodel.cn/api/paas/v4/chat/completions' \
--header 'Authorization: Bearer <你的apikey>' \
--header 'Content-Type: application/json' \
--data '{
"model": "glm-4",
"messages": [
{
"role": "user",
"content": "你好"
}
]
}'
trăm sông / trăm sông / trăm sông
Tạm thời không có ba trăm ngàn
curl -X POST https://api.baichuan-ai.com/v1/chat/completions\
-H "Content-Type: application/json"\
-H "Authorization: Bearer ${API_KEY}"\
-d '{
"model": "Baichuan2-Turbo",
"messages": [
{ "role": "user", "content": "我日薪8块钱,请问在闰年的二月,我月薪多少" }
],
"temperature": 0.3,
"stream": false
}'
LangChain中的百川