Deep Eval和Confident AI
价格
Free套餐:基本够用
Starter套餐:20美元/月
Quick Start
最新版本
pip install -U deepeval
注册 Confident AI
获取api key
登陆
deepeval login --api-key xxxx
创建文件test_example.py
from deepeval import assert_test
from deepeval.test_case import LLMTestCase
from deepeval.metrics import AnswerRelevancyMetric
def test_answer_relevancy():
answer_relevancy_metric = AnswerRelevancyMetric(threshold=0.5)
test_case = LLMTestCase(
input="What if these shoes don't fit?",
# Replace this with the actual output of your LLM application
actual_output="We offer a 30-day full refund at no extra cost."
)
assert_test(test_case, [answer_relevancy_metric])
文件名必须是test_开头
运行
deepeval test run test_example.py
设置保存结果的文件夹
设置环境变量
export DEEPEVAL_RESULTS_FOLDER="./deep-eval-results"
deepeval test run的参数
并行
deepeval test run test_example.py -n 4
缓存
deepeval test run test_example.py -c
重复
deepeval test run test_example.py -r 2
钩子
...
@deepeval.on_test_run_end
def function_to_be_called_after_test_run():
print("Test finished!")
基本概念
Test Case | 包含input/actual_output/retrieval_context | |
Dataset | Test Case的集合 | |
Golden | 相比 test case,少了 actual_output |
一个实际的Test Case
test_case = LLMTestCase(
input="Who is the current president of the United States of America?",
actual_output="Joe Biden",
retrieval_context=["Joe Biden serves as the current president of America."]
)
使用 Pytest 进行评估
from deepeval import assert_test
from deepeval.test_case import LLMTestCase
from deepeval.metrics import AnswerRelevancyMetric
dataset = EvaluationDataset(test_cases=[...])
@pytest.mark.parametrize(
"test_case",
dataset,
)
def test_customer_chatbot(test_case: LLMTestCase):
answer_relevancy_metric = AnswerRelevancyMetric()
assert_test(test_case, [answer_relevancy_metric])
@pytest.mark.parametrize
是 Pytest 提供的装饰器。它只是循环逐EvaluationDataset
一评估每个测试用例。
不用CLI运行
# A hypothetical LLM application example
import chatbot
from deepeval import evaluate
from deepeval.metrics import HallucinationMetric
from deepeval.test_case import LLMTestCase
# ……
test_cases = [first_test_case, second_test_case]
metric = HallucinationMetric(threshold=0.7)
evaluate(test_cases, [metric])
Test Case
一个标准的Test Case
test_case = LLMTestCase(
input="What if these shoes don't fit?", #必选
expected_output="You're eligible for a 30 day refund at no extra cost.", #必选
actual_output="We offer a 30-day full refund at no extra cost.",
context=["All customers are eligible for a 30 day full refund at no extra cost."], # 参考值
retrieval_context=["Only shoes can be refunded."], # 实际检索结果
latency=10.0
)
context
是给定输入的理想检索结果,通常来自评估数据集,retrieval_context
LLM应用程序的实际检索结果。
Dataset
手动生成dataset,并推送到Confident AI
from deepeval.test_case import LLMTestCase
from deepeval.dataset import EvaluationDataset
# 原始数据
original_dataset = [
{
"input": "What are your operating hours?",
"actual_output": "...",
"context": [
"Our company operates from 10 AM to 6 PM, Monday to Friday.",
"We are closed on weekends and public holidays.",
"Our customer service is available 24/7.",
],
},
{
"input": "Do you offer free shipping?",
"actual_output": "...",
"expected_output": "Yes, we offer free shipping on orders over $50.",
},
{
"input": "What is your return policy?",
"actual_output": "...",
},
]
# 遍历,将生成 LLMTestCase 实例
test_cases = []
for datapoint in original_dataset:
input = datapoint.get("input", None)
actual_output = datapoint.get("actual_output", None)
expected_output = datapoint.get("expected_output", None)
context = datapoint.get("context", None)
test_case = LLMTestCase(
input=input,
actual_output=actual_output,
expected_output=expected_output,
context=context,
)
test_cases.append(test_case)
# 将 LLMTestCase 数组变成 EvaluationDataset
dataset = EvaluationDataset(test_cases=test_cases)
# 推送到Confident AI
dataset.push(alias="My Confident Dataset")
查看结果
在Confident AI的Web UI手动创建
支持中文
手动修改/Users/xxx/anaconda3/envs/LI311-b/lib/python3.11/site-packages/deepeval/synthesizer/template.py
下的所有Prompt,增加
6. `Rewritten Input` should be in Chinse.
Metric
评估的维度
评估指标 | 描述 |
---|---|
正确性和语义相似度 | 生成的答案 与 参考答案 的对比 |
Context Relevancy | 查询 与 检索到的上下文 的相关性 |
Faithfulness | 生成的答案 与 检索到的上下文 的一致性 |
Answer Relevancy | 生成的答案 与 查询 的相关性 |